Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a Mo03 Interfacial Layer

Identifieur interne : 002C86 ( Main/Repository ); précédent : 002C85; suivant : 002C87

Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a Mo03 Interfacial Layer

Auteurs : RBID : Pascal:11-0349833

Descripteurs français

English descriptors

Abstract

The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO3 interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/ anode interface. The incorporation of the high-work-function MoO3 layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0349833

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a Mo0
<sub>3</sub>
Interfacial Layer</title>
<author>
<name sortKey="Brown, Patrick R" uniqKey="Brown P">Patrick R. Brown</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lunt, Richard R" uniqKey="Lunt R">Richard R. Lunt</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name>NI ZHAO</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Electronic Engineering, Chinese University of Hong Kong</s1>
<s3>HKG</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<placeName>
<settlement type="city">Sha Tin</settlement>
</placeName>
<orgName type="university">Université chinoise de Hong Kong</orgName>
</affiliation>
</author>
<author>
<name sortKey="Osedach, Timothy P" uniqKey="Osedach T">Timothy P. Osedach</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, Massachusetts 02138</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cambridge, Massachusetts 02138</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wanger, Darcy D" uniqKey="Wanger D">Darcy D. Wanger</name>
<affiliation wicri:level="4">
<inist:fA14 i1="05">
<s1>Department of Chemistry, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chang, Liang Yi" uniqKey="Chang L">Liang-Yi Chang</name>
<affiliation wicri:level="4">
<inist:fA14 i1="06">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bawendi, Moungi G" uniqKey="Bawendi M">Moungi G. Bawendi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="05">
<s1>Department of Chemistry, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bulovic, Vladimir" uniqKey="Bulovic V">Vladimir Bulovic</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0349833</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0349833 INIST</idno>
<idno type="RBID">Pascal:11-0349833</idno>
<idno type="wicri:Area/Main/Corpus">002C45</idno>
<idno type="wicri:Area/Main/Repository">002C86</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AND circuit</term>
<term>Electrode material</term>
<term>Electronic structure</term>
<term>Fermi level</term>
<term>Gold</term>
<term>Heterojunctions</term>
<term>IV characteristic</term>
<term>Illumination</term>
<term>Indium oxide</term>
<term>Interface energy</term>
<term>Interfaces</term>
<term>Interlayers</term>
<term>Lead sulfide</term>
<term>Modelling</term>
<term>Molybdenum oxide</term>
<term>Nanostructured materials</term>
<term>Optimization</term>
<term>Photovoltaic cell</term>
<term>Quantum dots</term>
<term>Quantum yield</term>
<term>Scanning transmission electron microscopy</term>
<term>Schottky barrier diodes</term>
<term>Silver</term>
<term>Theoretical study</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Work functions</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Hétérojonction</term>
<term>Dispositif photovoltaïque</term>
<term>Energie interface</term>
<term>Optimisation</term>
<term>Couche intermédiaire</term>
<term>Couche mince</term>
<term>Caractéristique courant tension</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Rendement quantique</term>
<term>Eclairement</term>
<term>Microscopie électronique balayage transmission</term>
<term>Oxyde de zinc</term>
<term>Sulfure de plomb</term>
<term>Oxyde de molybdène</term>
<term>Oxyde d'étain</term>
<term>Oxyde d'indium</term>
<term>Diode barrière Schottky</term>
<term>Interface</term>
<term>Travail sortie</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Matériau électrode</term>
<term>Circuit ET</term>
<term>Or</term>
<term>Argent</term>
<term>ZnO</term>
<term>PbS</term>
<term>Mo O</term>
<term>MoO3</term>
<term>8107T</term>
<term>8535B</term>
<term>8107B</term>
<term>8535</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO
<sub>3</sub>
interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/ anode interface. The incorporation of the high-work-function MoO
<sub>3</sub>
layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a Mo0
<sub>3</sub>
Interfacial Layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BROWN (Patrick R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LUNT (Richard R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NI ZHAO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OSEDACH (Timothy P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WANGER (Darcy D.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHANG (Liang-Yi)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BAWENDI (Moungi G.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BULOVIC (Vladimir)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electronic Engineering, Chinese University of Hong Kong</s1>
<s3>HKG</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, Massachusetts 02138</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Chemistry, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>2955-2961</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000509449910670</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0349833</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO
<sub>3</sub>
interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/ anode interface. The incorporation of the high-work-function MoO
<sub>3</sub>
layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F01</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Hétérojonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Heterojunctions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Energie interface</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Interface energy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Energía interfase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche intermédiaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Interlayers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Rendement quantique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum yield</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Microscopie électronique balayage transmission</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Scanning transmission electron microscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sulfure de plomb</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Lead sulfide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Plomo sulfuro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de molybdène</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Molybdenum oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Molibdeno óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Diode barrière Schottky</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Schottky barrier diodes</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Interface</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Travail sortie</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Work functions</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Matériau électrode</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Electrode material</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Material electrodo</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Circuit ET</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>AND circuit</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Circuito Y</s0>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>36</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>37</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>PbS</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Mo O</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>MoO3</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>241</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002C86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0349833
   |texte=   Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a Mo03 Interfacial Layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024